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Abstract

We transform the trigonometric S wave Rosen–Morse potential to momentum
space by employing its property of being a harmonic angular function on the
three-dimensional hypersphere S3.

PACS numbers: 03.65.Ge, 02.30.Uu

Momentum space potentials obtained as Fourier transforms of central potentials are of interest
in a variety of physics problems ranging from condensed matter to particle physics. They can
be viewed as instantaneous propagators of the fields mediating the respective interactions and
are especially important in Faddeev few-body calculations which are more efficiently carried
out in momentum than in position space. Unfortunately, the power potentials of wide spread
such as linear and harmonic oscillator interactions do not have well-defined Fourier integrals
[1], the inverse distance potential being the most prominent exception.

We here make the case that the S wave trigonometric Rosen–Morse potential when
considered as an angular function on the three-dimensional (3D) surface of constant positive
curvature, the S3 hypersphere, allows for a momentum space transform that can be cast in a
closed form.

The cot + csc2 interaction, known as the trigonometric Rosen–Morse potential and
managed by SUSYQM [2], was in fact invented by Schrödinger in [3] and was originally
introduced as an angular function on a three-dimensional (3D) surface of constant positive
curvature, the hypersphere S3 embedded in a flat Euclidean space of four dimensions, E4. Up
to additive constants, it takes the form

VRM(χ) = −2B cot χ +
h̄2

2μd2
l(l + 1) csc2 χ. (1)

Here l is the value of the 3D angular momentum, d is a matching length constant, while χ

is the second polar angle in E4. In choosing the parameterization, χ = r
R

, for the angular
variable, where R is the constant radius of S3, while r = Rχ is the length of the arc on
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the hyperspherical surface, VRM(χ) is usually given the form of a potential in a 3D space,
though not a flat one. The 3D flat Euclidean space, E3, embedded in E4 is described in
terms of a radius vector of an absolute value, |r|, defined as |r| = R sin χ . Therefore, the χ

parametrization corresponding to the correct 3D flat space embedded in E4 is χ = sin−1 |r|
R

.
The nature of the space, flat versus curved, is of minor importance for the energy spectrum

and the wavefunctions, and reduces to the interpretation of R. In the flat space R is viewed
as some matching length parameter, while S3 puts it on the firmer ground of a parameter
encoding the curvature. Yet, regarding integral transformations such as Fourier transforms
to momentum space, the nature of the space acquires significance through the definition of
the integration volume. Trying to use the flat space E3 integral volume and a 3D plane wave
to Fourier transform VRM

(
χ = r

R

)
as a function of the arc, r, is inconsistent and leads to

a divergent Fourier integral. Considering instead VRM as a function of the radius vector of
the correct flat E3 space, underlying E4, allows for a Fourier transform that can be taken
in a closed form. Below we calculate the 4D Fourier transform of VRM

(
χ = sin−1 |r|

R

)
to

momentum space.
Angular potentials in extra dimensions are important because they allow us to replace

complicated many-body problems in flat space by effective two-body systems on curved spaces
with the curvature parameter absorbing the many-body effects. This is a well-known technique
which has been applied in several physics problems ranging from plasma to instanton physics
[4–6]. Specifically, the trigonometrical Rosen–Morse potential has found an interesting
application in the physics of strongly interacting elementary particles [7]. It has been shown
to act as the exactly solvable extension to the quark confinement potential [8] obtained in
solving the equation of quantum chromodynamics by the technique of simulations on a lattice,
an observation reported in [9]. As another relevant application of the same potential, we wish
to mention its use in the theory of quantum dots [10].

Treating the interaction under discussion as an angular function on S3 is possible because
of its SO(4) symmetry. The latter is best understood by observing that the Schrödinger
equation with the cot + csc2 potential is closely related to the eigenvalue problem of the 4D
angular momentum on S3. Throughout the paper, we consider ordinary Euclidean flat space,
E3, embedded in a 4D Euclidean space, E4, and parametrize the 3D spherical surface S3 as
x2

4 + r2 = R2 with x4 = R cos χ , and |r| = R sin χ . Here, R is the constant hyper-radius of

S3. The angular part, |̂|, of the 4D Laplace–Beltrami operator is proportional to the operator
of the squared 4D angular momentum, K2, and is given by

|̂| =
[

1

sin2 χ

∂

∂χ
sin2 χ

∂

∂χ
− L2(θ, ϕ)

sin2 χ

]
= −κK2, κ = 1

R2
. (2)

Here L2(θ, ϕ) is the standard 3D orbital angular momentum operator in E3, the ordinary
position space1, χ is the second polar angle in E4, χ ∈ [0, π ], while κ stands for the constant
curvature. Consequently, the Schrödinger equation on S3 becomes[

h̄2

2μ
κK2 − E(κ)

]
ψ(χ, κ) = 0, (3)

where μ stands for the reduced mass. The K2 eigenvalue problem reads [11]

K2|Klm〉 = K(K + 2)|Klm〉, |Klm〉 ∈
(

K

2
,
K

2

)
. (4)

The |Klm〉-levels belong to irreducible SO(4) representations of the type
(

K
2 , K

2

)
, and the

quantum numbers, K, l, and m define the eigenvalues of the respective four-, three- and

1 The analog on the 2D sphere, S2, of constant radius |r| = a, is the well-known relation �∇2 = − 1
a2 L2.
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two-dimensional angular momentum operators upon the state. These quantum numbers
correspond to the SO(4) ⊃ SO(3) ⊃ SO(2) reduction chain and satisfy the branching
rules, l = 0, 1, 2, . . . , K , and m = −l, . . . , +l. Multiplying equation (3) by (− sin2 χ)

and changing the variable to ψ(χ, κ) = sin χS(χ, κ) results in the following Schrödinger
equation:[

−κ
h̄2

2μ

d2

dχ2
+ Ul(χ, κ)

]
S(χ, κ) = E(κ)S(χ, κ), Ul(χ, κ) = κ

h̄2

2μ
l(l + 1) csc2 χ,

(5)

with Ul(χ, κ) now having the meaning of a centrifugal barrier on S3. As a different
interpretation of equations (3) and (5), one can say that the csc2 potential, in representing
the centrifugal barrier on the 3D hypersphere, has SO(4) as a potential algebra. An important
observation is that the potential algebra SO(4) remains unaltered upon adding to the csc2 term
the harmonic fuction, cot χ . This is visible from the fact that the energy continues being a
function of the K2 eigenvalues K(K + 2) alone which translate into the principal quantum
number n used in [2] as n = K + 1. In effect, the SO(4) symmetry of the cot + csc2 interaction
allows us to consider it as an angular function on S3, a circumstance that will substantially
facilitate its transformation to momentum space. We here adopt the following parametrization
of the trigonometric Rosen–Morse potential as a function of the second polar angle, χ , on S3,
and the curvature:

V(χ) = −2G
√

κ cot χ + κ
h̄2

2μ

l(l + 1)

sin2 χ
. (6)

In Cartesian coordinates, the cot χ term equals x4
|r| , and stands in fact for two potentials distinct

by a sign and describing interactions on the respective Northern and Southern hemispheres.
Correspondingly, their respective Fourier transforms to momentum space become

4π	(|q|) = −2G
√

κ
2μ

h̄2

∫ ∞

0
d|x||x|3δ(|x| − R)

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

×
∫ π

2 /π

0/ π
2

dχ sin2 χei|q| sin χ√
κ

| cos θ cot χ, (7)

where the δ(|x| − R) function restricts E4 to S3. Here, the 4D plane wave has been evaluated
in reference to a z-axis chosen along the momentum vector (a choice justified in elastic
scattering3) and a position vector of the confined particle having in general a non-zero
projection on the extra dimension axis in E4:

eiq·x = ei|q||r| cos θ = ei|q| sin χ√
κ

cos θ
, |r| = R sin χ = sin χ√

κ
. (8)

On S3 one has to distinguish between two types of momentum space potentials. The first one,
displayed in figure 1, goes with χ ∈ [

0, π
2

]
, corresponds to a positive x4, and describes an

2 Harmonic angular functions in E4 are K2 eigenfunctions belonging to zero eigenvalues The function cot χ of the
second polar angle is such a quantity, and the counterpart on S3 to the harmonic S2 function, ln tan θ

2 , of the first polar
angle which satisfies ∇2 ln tan θ

2 = 0. The general mathematical theory of angular potentials and related harmonic
functions has been developed by Gabov in [12] and references therein.
3 A consistent definition of the E4 plane wave would require a Euclidean q vector. However, for elastic scattering
processes, of zero energy transfer, where q0 = 0, the q vector can be chosen to lie entirely in E3, and be identified
with the physical spacelike momentum transfer.
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Figure 1. The curvature dependence of the momentum space potential in the Northern hemisphere.
The Southern part appears mirrored with respect to the horizontal plane. Both potentials approach
zero at infinity.

increasing |r|, while the second refers to χ ∈ [
π
2 , π

]
, a negative x4, and describes a decreasing

|r|. The first type refers to the Northern hemisphere and reads

	(|q|) = c
2 sin2 |q|

2h̄
√

κ(
|q|

h̄
√

κ

)2 , c = 2G
2μ

h̄2κ
. (9)

It is increasing in the infrared, finite at origin, and approaches asymptotically the Coulomb
propagator in the ultraviolet. Such a type of behavior is required, for example, in the description
of confinement phenomena [13]. If one had treated instead the cot potential as a flat space
interaction, the 3D Fourier integral would have been divergent [9] and one would have been
forced to introduce a π range correlation function in order to get it finite as we did in [14].

In summary, one of the virtues of the curvature aspect of the cot interaction is that its S3

Fourier transform comes out well defined.
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